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The problem of constructing an optimum law for the decrease in weight 
of the power generators (with a corresponding decrease in the power of 
the reactive jet) during the motion of a variable-mass body in a gravi- 
tational field was studied earlier in [l-31. Paper f-11 contains an 
analysis of a stepwise decrease in power. A continuous diminution in 
power was investigated in c23 and the analysis of the stepwise diminu- 
tion in power was continued. The results of [31 in which the problem of 
an optimum decrease in power is solved for constant acceleration due to 
reactive thrust can be obtained as a particular case from 123. 

Below, the problem analyzed in t21 is extended to the case when the 

jettisoned sections of the power generators can be used partially or 
completely as propellant to generate thrust* (active jettisoning of 
generators). 

1. Formulation of the variational problem. Ihe system of 
equations describing the motion of a variable-mass body in a gravita- 
tional field and the change in the body weight can be represented as 

Gm= - Qm, 

GN = --9, 

(1.1) 

* The idea of using “excess” parts of the system as propellant was ex- 
pressed by Tsander 141 in 1909. 
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Optimum control of power generators 955 

It is assumed here that the body weight G is distributed between the 

store of working material [propellant] G,, the power generators GN and 

the useful load [pay load] G", where the weights Gm and c;N are assumed 

I>0 
to vary with time t. The weight discharge [consumptionl pkr second 

q,(t)>0 and the y part (O\(y(t)<y,,,<l) of the discharge ?,(t 

are used to generate reactive thrust. 'Ihe weights C;,, c;N, G, and the 

discharges q,, qV are referred to the initial body weight. 

The reactive jet power N = 7v2/2 ( h w ere V is the discharge velocity) 

can vary between zero and a certain maximum value. ‘Ihe maximum value of 

the power is assumed to be related linearly to the weight of the power 

source [generators] NDpx = c;N,, (where a is the specific weight of the 

power source). 'l'he power N is considered to be referred to its maximum 

value so that O<N(t) <l. 

'Ihe unit vector i(t) indicates the thrust direction. r and v denote 

the radius-vector and body velocity, R = R(r, t) and g the acceleration 

due to the gravitational forces at the point (r, t) and the magnitude 

of gravity at the earth's surface, respectively. l'he combination 

is the acceleration due to thrust (thrust divided by the flowing mass). 

'Ihe dot denotes differentiation with respect to time. 

Just as in 121, the problem is posed of finding the minimum time of 

motion T for a given magnitude of useful load Gn. 'Ihis problem reduces 

to the following variational problem for system (1.1). 

To select from a set of piecewise-continuous, piecewise-smooth func- 

tions such controls 

O,<N(t)\< 1, O < 7 tt) < +Yrnaxy ( i (t) 1 E 1 

o< Qm 0) < 001 0 < QV @) < 00 (1.3) 

as would guarantee minimum time of transition T of system (1.1) for 

given G,,, Y,,, and a from the given initial state* 

Gm + GNU = 1 - Gn (to = 0) (1.4) 

l The initial and final conditions for r and v are not made specific, 

it is merely assumed that these conditions satisfy all the require- 

ments imposed for application of the maximum principle c5.63. 
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into a given final state 

G,, = 0 (fl = T) (1.5) 

under the conditions 

2. Composition of the optimum control. The formulated vari- 

ational problem is a problem of the maximum fast-response. 'the 

Pontriagin method [S,6] is used in the first step of the solution, 

In addition to restrictions (1.3) on the control functions, the prob- 

lem under consideration contains restrictions (1.6) of the phase co- 

ordinates as well. V&thin the domain (Cm>,O, r;lv >O) the maximum 

principle is valid according to which the llamiltonian 

H= --pPmqm-- pv qy -t P,.V + pc.R + pt + 

(’ 3H ati . a12 . air . aii \ pm=___, p, =-,G:,t pr-=--;, pc---‘F’ I-‘F---;Ti-) 

at the optimum control should have an absolute maximum in the variables 

i, N, y, T,,, and 'I~, subject to conditions (1.3). 

As regards the boundary c?,~ = 0, it can only be reached at the end of 

the controlled motion; after this boundary is crossed the thrust vanishes 

and only motion by means of inertia is possible. 'Ihe use of the dis- 

carded part of the power source as working material makes possible 

motion along the boundary Gm = 0. Jlowever, according to [s], for this 

section the form of the function H and the differential equations for 

the momenta p are retained, the phase coordinates and the momenta pass 

through the junction point continuously and the maximum principle seems 

to be applicable along all the trajectories. 

Hence, the optimum control is determined throughout from the condi- 

tion of the maximum of the Ilamiltonian (2.1) in the variables i, N, y, 
7, and ~1, taking account of restrictions (1.3). Ihe unit vector i(t) in 
the fourth term of the function H is selected so that the scalar product 

P, x i, with the non-negative coefficient, would be a maximum 

pu.i = Ih I (2.2) 
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i.e. the thrust vector* must be directed along the vector p,. 

It follo\Ks from an analysis of the same .term, taking condition (2.2) 

into account,, that the parameter y and the power PJ must be as 1ar;;e as 

possible** 

T (4 = rn1axt N (t) = 1 0.3) 

Afterwards, the part of tile function /! dependent on the controls q, 

and ~1~ can be written as follows+: 

II* =-- pm c/m - pv qv -1 pa I I/(“&) GN (qm+ y qv) / (cm $-- G.v +G) (2.4) 

If one or both momenta pm, p, are less than or equal to zero, then 

the optimum value of one or both discharges T,, qV becomes infinite, 

1.e. the condition of piecewise continuity of the controls is violated. 

If Pm > 0 and p, > 0, then the optkm quantities of the disclrar;<es are 

finite and depend on the sip of the funct,ion 

3. 0, = P,, (1) - ?'Pm (4 (2.5) 

and are determined by the following relations (see !Zppendix I): 

Q - 
k I4 G, pu2 

VI - 2p,,2 (G,,, + G, -t G,)” ’ 
q, = 0 for A>@ 

(2.6) 
q, == 0, 

qv = 

T (g / J) G,v p,,2 
2p,2 (C,,, -1. c,yJZ~ 

for A<0 

ln the A(t) = 0 case, the condition of maximum of the function Jl* 

does not determine either of the discharges ‘I, and ~1, but determines 

only the sum (~1 + ~7,). ‘The case A = 0 is sinplar in this sense. The 

optimum values tf the discharges are successfully established on the 

* 

** 

+ 

In the singular case Ip,(r)! = 0 it will follow from (2.6) and (2.8) 

that the discharges ~1~ and 4”. hence meaning the thrust also, will 

equal zero. As will be seen from (5.8). p,, will never vanish except 

in the degenerate case of entirely passive motion. 

Optimum of the total use of the power for motion with constant weight 

of the power source was first proved in [7!. When the maximum power 

of the reactive jet depends on the discharge velocj.ty, the boundary 

character of the opt,imum control of the power was established in [81. 

Here and henceforth, y (without a subscript) will be understood to 

be the maximum value y,,,. 
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sections A(t) = 0 by using the condition b(t) = 0 from which it follows 
that (see Appendix 1) 

G, (t) -t G = 61-W GN (4 (2.7) 

As is easy to see, this expression has meaning for y ( 0.5, GN < 0.5. 

In combination with the condition of maximum of the function .% it 

yields 

qm = (+--27)qv = 
(1 - 2~) (g i 4 GN pn2 

2 (f - ‘r) P,” (G, + G, -I- G,P 
for A=@ (2.8) 

3. Optimum control of the power source. According to the pre- 
ceding section, the power which the source cormnunicates to the reactive 

jet and the fraction y of the discharge qV used as the working material 

must be the greatest possible [see (2.3)1 . Moreover 

q, = 0 for A>O, q,,, = (1-2 7) q, for A =O, qm ==: 0 for A <O 

[see (2.6), (2.8)1; i.e. equations (1.1) can be written in terms of one 

of the discharges Q, or q, on each section of the optimum motion. ‘This 

discharge is replaced by the new control function a, the acceleration 

due to thrust (1.2). Rlen the two vector equations (1.1) tietermining 

the motion trajectory will not contain the weight parameters: i = V, 

i = ai t R, and equations (1.1) describing the change in the weights Cm 
and GN will be expressed in terms of the weight parameters and the 

square of the acceleration due to thrust 

G-7 =5 - 
0% + G, + ‘V 2 a2 

GN 2g ’ 
GN (t) = const for A(t)>0 

Cm = - 4 (1 - ~1 (Gm -I- GtJ Tg a 9, GN (t) = 
G, (11 + G, A {t) = 0 

1--22_( for 
( 

6~2;;‘~ (3.2) 
ft 

G,, (t) = const, 
G = _ (C,+GN+GJ' a 

%a 

2 

N 
7GN 

for ;FoCo (3.3) 

In order to establish from which of the extrema (3.1) to (3.3) the 

optimum weight-change law is composed and to determine the alternation 

of these extrema, it is necessary to investigate the character of the 

behavior of the function A(t) given by relation (2.5). 

At the beginning of the motion 

A (0) 11~: 1 - 7 (3.4f 
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since it follows from condition (1.4) on the basis of 

[51 l that 

959 

the general theory 

either pm0 = pVo = - 1, Or Pm0 = Pvo = 1 

The first possibility drops out because the discharges 9, and qv be- 
come infinite (see Section 2). Consequently, A(0) > 0 [except for the 
case y = 1 when A(0) = 01 and an extremum of type (3.1) is realized. 

The value of the weight GA, is not given at the end of the motion, 1 

hence, pvl = 0. The derivative of the momentum pm determined by 
formulas (2.1) with (2.2) and (2.3) taken into account 

b,=IP,11/(2R/a)GN(qm+rqv) l(G,+G,+G,P (3.5) 

is non-negative everywhere. The initial value of this momentum pm0 is 

positive, hence, at the end of the motion 

A (T) = - mnl<O (3.6) 

(except for the case y = 0 when A(T = 0) and an extremum of type (3.3) 
is realized. Thus, the weight G,, which is constant along this extremum, 
vanishes according to condition (1.5). 

Two versions (for 0 < y < 1) can occur later. 

1. The derivative A is always negative, then the optimum law of the 
weight change consists of extrema of type (3.1) and (3.3). 

2. The derivative A is first negative, then vanishes at A = 0 and re- 
mains zero a certain time. After G, has diminished to zero, the deriva- 
tive b again becomes negative and does not change sign until the end of 
the motion. In conformity with this, the weight-change lala consists of 
successively joined extrema (3.1). (3.2) and (3.3). 

Condition (3.6) is not satisfied for all the remaining Versions (see 

Appendix 2). 

In the limiting case y = 1 the initial value of the function A is 

zero, hence, the change in weight is determined everywhere by relation 
(3.3). For the other limiting case y = 0, considered in [21, relation 
(3.3) has no meaning and the optimum weight-change 1aW consists only 
either of (3.1) or of (3.1) and (3.2). 

l For t = 0 the generalized momentum vector must be normal to the hyper 
plane (1.4). After appropriate normalization it can be considered 
that p,,, = pvO = f 1. 
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Let us turn now to the integration of equations (3.1) to (3.3). The 

variables separate in each of these equations and the quadratures, if 

the condition of continuous joining of the solutions is taken into 

account, have the form: 

For the case (3.1) t (3.3) 

0 

d Gm 
GN1 

GN dGN 
(3.7) 

G 
(G,+cN,, +',I)' 

li70 

-’ ho (G,+c,)2 = @ 

For the case (3.1) + (3.2) + (3.3) 

G,* 

- GNO 
dGm 

0 GNl 
1 dG?n GN dGN 

c 
(G, + GNU + GJ2 -‘4 (1 - 7) s 

%I* 
GWI + G, -?’ \ (G, +G,Js = @ 

m0 G*VV” 

Here 
(3.8) 

T 

a = ;-a2dt, 
0 

G,, = I- GNo - G,, 

G,* = (I- 2~) GNO - G, (3.9) 

GN** = G,/(1 - 27) 

After the integrals (3.7) and (3.8) have been evaluated, a final 

relation is established between the relative useful load G,,, the initial 

CN,, and the final GN1 by means of the values of the weight of the power 

source, the parameter y and the magnitude of the functional CD. Here G, 

decreases monotonely as 0 increases, thus permitting the separation of 

the problems of optimum programming of the acceleration due to thrust 

and optimum control of the power source. 

The optimum program a(t) = ai must guarantee minimum time T of dis- 
placement (G = v, V = a + R) from a given initial and given final state 
of fixed value of the integral 

J = 1 2dt 
0 

(or a minimum of the integral J for a fixed time of motion*). 

. This problem is considered in [1,71. The mentioned separation of the 

general problems is retained even in the presence of restrictions on 

the acceleration a; for example, omin < a(t) \< aloax; a(t) z a,,, 0. 

etc. However, if restrictions are not imposed directly on the accele- 

ration but on the discharge or on the outflow velocity [81, then this 

property is not retained in the general case. A methodological 
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Optimum control of the power source is described by relations (2.3), 

(3.1) to (3.3), (3.7) and (3.8). ‘III e initial and final values of the 
weight of the power source are determined from the condition of maximum 
of the function (D(G,, y, GNO, GN1), given by relations (3.7) and (3.8) 
by means of the variables G,,,,, and GN1 for fixed values of Gn and y. 

For the case (3.1) + (3.3) this procedure leads to the relations 

and for the case (3.1) f (3.2) + (3.3), to the relations 

CN* = 114 (1 - r), GNI = 0 (3.11) 

An analysis of the integrated expressions (3.7) and (3.8) in which 

the optimum values (3.10) and (3.‘11) of the initial and final weights 
of the power source [see (3.14), (3.151 have been substituted, permits 
the establishment of exact ranges of the realization of each type of 
solution. 

‘&e solution (3.1) + (3.3) holds in the ranges 

(l-27) I 4 (I - 7) < Gn < 1, 0 < T < 0.5 

O< Gn< 1, 0.5 < r < 1 (3.12) 

and the solution (3.1) + (3.2) t (3.3) in the range 

0 < G -\( (1 - 2~) 1 4 (1 - $7 0 < r < 0.5 (3.13) 

The domains (3.12) and (3.13) are shown in Fig. 1. ‘The domain (3.13) 
is hatched. 

difficulty arises in the search for an optimum magnitude of the con- 

stant weight of the power source GM(~) E CN,, in these cases: it is 

required to find the optimum value of the constant parameter GNO 

which will enter simultaneously into the right side of the motion 

equations (1.1) and in the boundary conditions (1.4). In the general 
theory of the maximum principle [51 a criterion is obtained for the 
selection of optimum values of the parameters entering only in the 

right sides of the equations. The mentioned difficulty can be by- 

passed by introducing the equation ~;NO = 0 and by considering GNo not 
as a parameter but as a phase coordinate. Then the problem with the 
parameter reduces to a problem without the parameter for whose solu- 

tion the maxlmum principle is applicable in its customary formulation. 
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For y = 1 the solution (3.3) is valid in the whole range 0 <G,, < 1 

and GN,, and (;N1 are determined by means of formulas (3.10). 

For y = 0, the solution (3.1) for which 

is realized in the interval 0.25 < Gn < 1, and we have the solution 

(3.1) + (3.2) in the interval 0 d G, d 0.25, where GNO = 0.25, GN1 = G,. 

Fig. 1. Fig. 2. 

The optimum magnitude of the initial weight of the power source GNO 

as a function of the useful load G, is presented in Fig. 2 for differ- 

ent values of y. lhe curves are constructed by means of formulas (3.10) 

and (3.11) taking account of the ranges of their realization (3.12) and 

(3.13). lhe dashed continuation of the lower curve and the right branch 

of the curve refer to the case GN( t) L \J (G, - G,) [1,71 . 

‘Ihe final expression for 0 in terms of G,, and y is 

for (I-2~)/4(1--)<G,,(l, 0<(<00.5andforO<G,<!, 0.5<~\<1 

CD = (1 - +y) (I- G, /x) - 7 In G, + Gn + 7 In x - x (3.14) 

for O<C,<(l-2~)/4(1--), O,(‘r\<0.5 

(-J),= l-27 ~ - r In 
f-227 1 4G, (1 - r) 

- 
4 (1 - -0 2(1--y) 4(i--7) In l-227 (3.15) 

The relative useful load G,, as a function of the magnitude of the 

functional @ is shown in Fig. 3 for fixed values of y. The lower solid 

curve corresponds to the case y = 0 analyzed in [21 _ This same curve 

(in the range 0 <@ GO.25) and its dashed continuation (in the range 
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0.25 < 0 < 1) refer to the case of constant weight GN analyzed in [1,7:. 

All the curves are shown in the range 0 < 0 d 1. How- 

ever, if the function G,(o) is meaningless outside this 

range in the case GN( t) E JC, - G,, then the useful 

load is defined on the whole semiaxis 0 d 6) <CO for 

optimally varying weight G,(t) and for G, << 1 the 
following- approximate formulas are 

valid: 

for 0 d y < 0.5 

G n z 3 exp [- 4 (1 - T) (D] (3.16) 

for 0.5 d y < 1 

Fig. 3. 

G II = exp (- Q / r) (3.17) 

The dependence of the useful load 

on the parameter y is almost linear for 

small values of a)(0 < @ $0.5) (Fig. 4) and transforms to the exponential 

(3.16) and (3.17) for large values. 

It follows from a comparison of the upper curve (Fig. 3) (y = 1) wiW 

the lower solid curve which refers to the case of passive power separa- 

tion (y = 0) that, for the same values of the functional @, the use of 

the discardable sections of the power source as a working material 

(active jettisoning of generators y > 0) essentially increases the use- 

ful load: by 1.2-fold for 0 = 0.05, 1.8-fold for @ = 0.25, more than 

threefold for @ = 0.5, sevenfold for @ = 0.75 and 15-fold for 0 = 1. 

However, a comparison of the useful load 

for the same values of the functional 

0 = (a/2g)J [see (3.0)1 yields exaggerated 

results. It is natural to assume the exist- 

ence of an increasing dependence of the 

specific gravity of the power source a on 

the parameter y, which will increase the 

value of 0 for fixed J. Knowledge of the 

dependence a(y) permits the solution of the 

problem of selecting the optimum value of y 

0 
which would guarantee maximum useful load 

Y 
1 

for a given value of the integral J. 

Fig. 4. 
4. Steprise decrease in the weight of 

the power source. The case of the continuous 

decrease in the weight of the power source considered above corresponds 

to an infinitely large number of sections (n = m in Fig. 3). It is 
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interesting to compare this Iimiting case with the case of a finite 
number of sections as was done in [21 for y = 0. 

At time tj let the jth section of the source be discarded and let the 
weight of the source remain constant in the interval (tj, tj+I)’ The 
power N and the parameter y, as before, must be the greatest possible. 
The change in the body weight is described by (3.1). Integrating this 
equation bg parts from t j to t j+l (j = 0, 1, . . . . I? - 1; t, = T) and 
combining, we obtain 

where the subscript j indicates the time tj and the 
superscripts plus or minus refer to the value of the 

separation times 

let us rewrite 

n-1 
a,=~G,; 

1=0 

GN/ = G&, 

(4. I) as follows: 

(j = 1, . . .) n) 

I 1 I 

\ G,,& + G,$ + G, - Cm; + S&.1 + (1 - ‘r) G& + G,, 1 (4.2) 

function to the right or’left of the 
time tj. 

Taking account of the relations on 
the discontinuities for the store of 
working material 

G,$ = Gn;; + r (CM; - GM;) 
(i = 1, f . *, R - 1) 

and the condition of constant weight 
of the power source between the 

Here 

G&, = G$, = GNO 1 G,,,; = c,,, C,, = G, (2’) = 0 

By evaluating the partial derivative a@/%,, it can be seen that the 
function (b(G,) is monotonically decreasing. Hence, the problem of seeking 
the maximum G, for a given value of @ can be reduced to finding the 
values 

G CR;; fi = 0 1,. . *, a - 1) (4.3) 
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which would guarantee a maximum of the function @ for 8 fixed value of 
G, and would satisfy the conditions 

%I0 + GNO = 1 - G,,, GN; d G,& 

We obtain a system of 2n algebraic equations (for 0 d y < 1) to de- 

termine the 2n unknowns in (4.3) 

G mj+1 + G* yG +. 
(Gmj+l + GN’j f Gn)’ + (Gmj+l + rGN; + (IN”’ ‘r) GN::+1 + G,Ja = 

(G,; + ~Glv+j_~ + (1 - ‘0 GN’j + Gn)a 
-=o 
aG& 1 

Gmi -+ Gn 
t(G,; + GN”o + G,J= 

%a-;, 

‘IGN: + (Gm- + yG,:, + (1 - 71 GN: -I- Gnf2 = * ( S=O) 
+ GN; = I- G, (j = I, . * ., n - 1) 

In the y = 1 limiting case the corresponding equations have the 
simple solution 

Cm; = G mo = 
1 _ G l/(n+l) 

n , G,,,I; = 0 (j = 1, . * .) n - 1) 

(4.4) 
G +. _ G,(j+r)/@+l) _ G, 

NJ - (j = 0, 1, . . .( n - 1; T =1: 1) 

Substituting (4.4) into (4.2) we obtain the relation between the 
maximum useful load G, and the magnitude of the functional @ 

@ = (n + 1) (1 - G,"@+*)) + G, - 1 for r = 1 (4.5) 

As n -+ CXJ this formula transforms into (3.14). Relation (4.5) is shown 
in Fig. 5 as the dependence G,(O) for n = 1. 2, 4. m. It is seen from 
the figure that the passage from n = 1 to n = 2 realizes approximately 
one-third of the greatest possible gain in useful load and the passage 
to II = 4 realizes approximately two-thirds. The remaining third is 
realized by the passage from n = 4 to n = co). In the y = 0 case analyzed 
in c23, the overwhelming part of the gain is realized for n = 2. It is 
interesting to note that the stepwise decrease in the weight of the 
power source shifts the upper bound of the range of admissible values 
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of the functional @ to 0 = n (G, = 0 for Q, = n). 

5. Appendix 1. The determination of the optimum discharges qm and 

V. V. Tokarev 

qV is made from the condition of an absolute maximum of the function H*, 
at each instant, in the independent variables 0 6 (I, < m, 0 d qV < m. 

The momenta p, and pV in expression (2.4) for H* must be strictly . 
greater than zero along- the optimum solution 

Pm 0) > 0, P, (f) > 0 

Otherwise, from the condition of maximum H* would 

qm = m or qv = m (or both). All this contradicts the 

discharges. 

Let us introduce the total discharge 

4 = Qm + rq” (0 f 4 < *3 0 Q Qm < Q10 < Q* 

and let us write the function H* thus by using it 

H* 3 - p,p,+]p,i1/(2g/a)CNql(G,+GN+G,)- 

(5.4) 

follow either 
condition of finite 

6QfT) (5.2) 

(A - wm) Pu (5.3) 

Hence, it is seen that the optimum distribution of the total dis- 

charge p between the components qm and qv is determined by the sign of 
the combination A = - pv - ypm. 

Indeed, if A > 0. then the maximum of H* in q, is achieved at qv = 0; 

and if A < 0, for qv = q/y, i.e. for qm = 0. In the A = 0 case, the 
function H* is independent of each of the discharges q, and qv 
separately but is determined by the total discharge q. Nence, in each of 
the three possible cases the function H l depends only on one of the 

controls q,, qv or q 

Hi*=- pmqm + I pu I Jf(% la) GN9, / (cm + GN + %I for A > 0 fqv = 0) 

I&,* x - p.,qv + 1 PC / f1(2g f a) $vYqv / tGm + &r-i + Gn) for A < 0 (9, = 0) 

H3* = - pnEq + I pQ t j’$k I 4 G,q t’ W,, + G.v + Gn) for A = 0 (5.4) 

From the stationarity conditions aHl*/aqn = 0 and aHz*/aq,, = 0, which 
here correspond to the condition of the absolute maximum, ws obtain the 

necessary relations (2.6) which determine the 
g, for A > 0 and for A < 0. 

Qor A = 0 there follows from the condition 

(g i a) G, Py' 

optimum controls q, and 

aH,/aq = 0 that 

for A - 0 (5.5) 
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when A vanishes in a certain finite segment rather than at isolated 

points (and,precisely such a ease will actually be singular), then the 
derivative A will also be zero in this interval 

Let us investigate the two possible variants. 

Pirst i, = 0. Using (5.5) we eliminate (q, + yqw) from (3.5) 

;, z 
(g~a)G~ PO2 

(G,+GN+G,f8p,a 45.7) 

Far this expression to vanish it is necessary that either GN= 0 or 

p, = 0. IA either case, the motion will be inertial without thrust since 
the discharges q, and gW will vanish according to (2.6) and (5.5). Hence, 
both situations will be retained until the end of the motion. For CN=O 
this requires no explanation but the momentum p,. as follows from (2.1) 

Pa, = - P,*. pr -- - pc aI% ‘! i)r (5.8) 

cam ranish only identically along all trajectories. This case is de- 
generate since the motion will be entirely passive. 

Hence, vanishing of the function A because 6, equals zero is only 
possible at the end of controlled Motion, when G# vanishes, i.e. the 
derivative g,, can be considered positive everywhere. 

The second variant remains 

I - 2~ - W,,, -I- G,,) I G, - 0 (5.9) 

This expression denotes the proportioAa1 change in the weight of the 
Power source GN and the store of working material G,. In combination 
with (5.5). it yields (2.8) uhich determines the optimum controls q, 

and qv at A = 0. 

6. Appendix 2. Alternation of the extrema (3.1) to (3.3) is deter- 
mined by the sign of the function A(t) from (2.5). Let us first consider 
the intermediate case 0 < y < I. It follons from the optimum boundary 
conditions for the momenta (3.4) and (3.6) that the initial value of the 
function A is greater tban zero and the final value is less than zero 
(A(Q) > 0, A(?‘) < 0). It is necessary to investigate the nature of the 
behavior of this fun&foA Within the interval CO, d. 

The time derivative of the fuaction A is defined bs (5.6). As is 
shown IA the preceding section, the derivative i, is positive. 

Therefore, the change in the sign of the fiction A depends on the 
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combination 

x= i-227-- (Cm + G,)ICN (6.4) 

At the beginning of the motion (3.4), A(0) > 0; hence, a change in 

weight occurs according to (3.1). According to (3. l), the weight GA, 

remains constant but Gm decreases, i.e. along (3.1) x increases. If it 

Fig. 6. Fig. 7. 

is assumed that A(O) > 0. then the final value A(T) will be positive 

because A(0) > 0 and A(t) k= 0 (because of the growth of x). Positiveness 

of A(T) contradicts condition (3.6). 

Hence, the derivative of the function A is negative at the beginning 

of the motion. Let us investigate two possible situations which can 

occur later. 

1. The derivative A(t) remains negative everywhere. Then A(t) crosses 

the t-axis at a certain time t = t (since A(O) > o and A(T) < 0). In 
the first interval 0 < t < t equalion (3.1) will hold, according to 

which GN( t) E GNo and in the*second 

t* < t 6 T, equation (3.3) holds along 

which Gm( t) E G,(t ) (see Fig. 6). where Cl 

Gn(t+) = 0 since G:(T) = 0 according to t=o A Y-f 

condition (1.5). 0 Tt 

2. The derivative A(t) vanishes at 

k 

I 

A(t) = 0 (t = t ). In the interval I 

0bt <t the Change in weight occurs t=ro 4 -47, 

according*to equation (3.1). At t = t 
it is replaced by (3.2). According to* 

Fig. 8. 

(3.2) the weights C, and GN change pro- 
portionately so that x and A remain zero. At a certain time t = t the 
weight Cm vanishes. After this only GN can change. The function A’imean- 

ing A also) again becomes negative as GN diminishes. The function A 

goes over into the negative domain and the control of the weight is 

accomplished according to equation (3.3) (see Fig. 7). 
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3. The derivative b(t) vanishes for b(t) > 0. In the domain A > 0 
the weights vary according to equation (3.1). according to which x in- 
creases. Hence, after having vanished, the derivative h becomes positive 
and the function A never falls into the domain of negative values, which 
contradicts condition (3.6). 

4. The derivative i\(t) vanishes for A(t) < 0. This possibility also 
drops out since the function x must decrease in the domain A <. 0, 
according to (3.3) and (6.1). But for the function A to drop into the 
negative domain at a time t = t it *is necessary that b( t*) < 0. Hence, 
in the domain A < 0 the derivative A remains negative. 

Hence, the latter two variants 3 and 4 drop out. There remains to 

examine the limiting cases y = 1 and y = 0. 

For y = 1 the initial value of the function A is zero (3.4) and its 
derivative (5.6) 

A=-+p, i+ 
i  

%I + G,, 
G ) for T = 1 

N 
(6.2) 

is negative everywhere. Hence, all the subsequent values of A lie in 
the negative domain and only the weight of the power source GN changes 
during the motion according to equation (3.3). The weight of the work- 
ing material G,,, is here identically zero since G,(T) ‘- 0 (Fig. 8) 
according to condition (1.4). 

In the y = 0 case, the initial value of the function A is one and 
the final value is zero (3.4) and (3.6). The function A cannot fall into 
the negative domain since equation (3.3) has no meaning for y = 0. 
Hence, A vanishes either at the end of the motion and then GN(t) s GN* 
(Fig. 9) or at a certain time t = tt < 7’. Then the derivative i\(t.) 

Fig. 9. Fig. 10. 

also vanishes and remains zero to the end of the motion. On the first 
section 0 < t < t the change in weight occurs according to (3.1). on 
the second sectiog t* < t < T according to (3.2) (Fig. 10). The 
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remaining possibilities are eliminated exactly as was done for 0 < y < 1. 
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